Oscillation Criteria for a Forced Second-Order Linear Differential Equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation criteria for a forced second order nonlinear dynamic equation

In this paper, we will establish some new interval oscillation criteria for forced second-order nonlinear dynamic equation (p(t)x(t)) + q(t)|xσ(t)|γsgn x(t) = f(t), t ∈ [a, b], on a time scale T where γ ≥ 1. As a special case when T = R our results not only include the oscillation results for second-order differential equations established by Wong (J. Math. Anal. Appl., 231 (1999) 233-240) and ...

متن کامل

Interval Oscillation Criteria for Second Order Mixed Nonlinear Forced Impulsive Differential Equation with Damping Term

In this paper, interval oscillation criteria are established for second order forced impulsive differential equations with mixed nonlinearities of the form ⎧⎪⎨ ⎪⎩ ( r(t)Φα(x′(t)) )′ + p(t)Φα(x′(t))+q(t)Φα(x(t))+ n ∑ i=1 qi(t)Φβi (x(t)) = e(t), t = τk, x(τk) = akx(τk), x′(τk+) = bkx′(τk), k = 1,2, . . . . The results obtained in this paper extend some of the existing results and are illustrated ...

متن کامل

Oscillation Criteria for Second-order Linear Differential Equations^)

where p(x) is a continuous positive function for 0<x< oo. Equation (1) is said to be nonoscillatory in (a, oo) if no solution of (1) vanishes more than once in this interval. Because of the Sturm separation theorem, this is equivalent to the existence of a solution which does not vanish at all in (a, oo). The equation will be called nonoscillatory—without the interval being mentioned —if there ...

متن کامل

Oscillation and Nonoscillation Criteria for Second-order Linear Differential Equations

Sufficient conditions for oscillation and nonoscillation of second-order linear equations are established. 1. Statement of the Problem and Formulation of Basic Results Consider the differential equation u′′ + p(t)u = 0, (1) where p : [0, +∞[→ [0, +∞[ is an integrable function. By a solution of equation (1) is understood a function u : [0,+∞[→] − ∞, +∞[ which is locally absolutely continuous tog...

متن کامل

Integral Criteria for Second-Order Linear Oscillation

We present several new criteria for the oscillation of the second-order linear equation y(t) + q(t)y(t) = 0, in which the coefficient q may or may not change signs. The criteria involve the integral ∫ tq(t) dt for some γ > 0. The special case γ = 2 is then studied in greater details. AMS Subject Classification: 34C10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1999

ISSN: 0022-247X

DOI: 10.1006/jmaa.1998.6259